Overblog
Suivre ce blog Administration + Créer mon blog
28 novembre 2013 4 28 /11 /novembre /2013 08:20
US Missile Defense Stumbles Toward Uncertain Threats

Third Interceptor Site: Possible East Coast locations for an additional ground-based interceptor site are being examined by the Missile Defense Agency. (US Missile Defense Agency)

 

Nov. 26, 2013  By PAUL McLEARY – Defense news

 

WASHINGTON — While the debate continues over how soon Iran or North Korea might be able to develop an intercontinental ballistic missile (ICBM) that could strike the US mainland, the US government is forging ahead with controversial plans to beef up its domestic missile defense capabilities well before any threat has materialized.

 

In September, the Missile Defense Agency (MDA) announced that in addition to the two ground-based interceptor (GBI) sites it operates in Alaska and California, it has started looking at five potential locations to house a third site in the eastern US.

 

Inspecting a variety of sites will allow the Pentagon to begin environmental assessments if a skeptical Congress eventually reaches agreement on the project and finds the necessary funding.

 

The prospective sites at Fort Drum, N.Y.; Camp Ethan Allen Training Site, Vt.; Naval Air Station Portsmouth, Maine; Camp Ravenna, Ohio; and the Fort Custer Training Center, Mich., are all on federal land. The existing GBI sites at Fort Greely, Alaska, and Vandenberg Air Force Base, Calif., house a total of 30 missiles, with another 14 to be added at Fort Greely by 2017 at a cost of about $1 billion.

 

The Congressional Budget Office has estimated that expanding the ground-based midcourse defense system to the East Coast would cost about $3.5 billion over the next five years.

 

Boeing acts as the prime contractor that manages the Pentagon’s program to defeat long-range missile threats, while Raytheon and Orbital Sciences have teamed to build both the interceptors and rockets.

 

The issue of an additional GBI site on the East Cost sparked controversy on Capitol Hill this summer, as Senate Democrats pushed back against congressional Republicans who again included money for the site in their 2013 defense budget markup. The Republicans also attempted to fund the third site in the 2012 budget, but Senate Democrats defeated the measure.

 

In June, the the Raytheon-made GBI system failed another MDA test, making it the fourth failed test of the capability — each costing about $70 million — since 2010, but the Pentagon insists that it will keep trying.

 

While the interceptor sites remain embroiled in controversy, several long-term missile tracking and interceptor technologies are ensnared in Pentagon red tape.

 

Since the late 1990s, the Army has been working on a variety of tethered aerostats that would be capable of tracking incoming missiles. After years of testing, Raytheon won the bid to actually design and build the Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System (JLENS) in 2005.

 

JLENS can reach an altitude of 10,000 feet and stay aloft for 30 days, and its 360-degree sensor package can scan the air, land and sea for up to 340 miles.

 

But budget pressures and long development times caused the Pentagon to radically scale back the program — which has completed its recent battery of tests — in the fiscal 2013 defense budget. The Army said it would build just two JLENS orbits instead of the 16 it originally wanted, saving the service an estimated $1.75 billion over the next half decade.

 

That hasn’t stopped the Army from preparing to send the JLENS to the Aberdeen Proving Ground in Maryland in 2014 to begin three years of tests in the highly congested airspace, roadways and sea lanes of the National Capital Region.

 

But the inability of Congress to pass a federal budget is putting that testing program at risk. In written testimony Oct. 23 to the House Armed Services Committee, Army acquisition chief Heidi Shyu said that without a full defense budget in 2014, JLENS “cannot meet scheduled construction plans.”

 

While JLENS continues to exist in a state of suspended — but tethered — animation, the Medium Extended Air Defense System (MEADS) developed by the US, Italy and Germany for about US $3.4 billion — with more than $2 billion coming from the United States — continues to move forward. In early November, MEADS, a 360-degree radar and missile system designed to knock down missile threats, intercepted and destroyed two targets simultaneously at the White Sands Missile range in New Mexico.

 

The only hitch is that after spending billions to develop the technology, the US Army has said it will continue to modernize and upgrade its existing Patriot missile batteries instead of buying MEADS, and the November test was its last.

 

But the program isn’t completely dead. The Army is assessing potential technologies it might want to “harvest” from MEADS and has promised to submit a report to the Pentagon in the spring outlining what elements of the program it might be able to use.

 

While all of this work is being done in the face of perceived threats, some perhaps inconvenient geostrategic facts are emerging. In November, the London-based International Institute for Strategic Studies released a report saying that Iran “is unlikely to have such a weapon before the end of the decade.”

 

Looking at efforts similar to Iran’s program to develop long-range ICBMs, the study concluded it’s “reasonable to conclude that Iran is unlikely to move on to producing an operational intermediate-range [missile], powered by a 20- to 25-ton first-stage motor within the next five years,” and “an ICBM powered by a first-stage motor in excess of 30 tons would likely require an additional five to 10 years, if not more.”

Partager cet article
Repost0
23 novembre 2012 5 23 /11 /novembre /2012 17:45

http://2.bp.blogspot.com/-agSeD0s4qpw/UK9r3uUe2DI/AAAAAAAARqQ/Ov0pIz-KMaQ/s1600/AAD%2BLAUNCHED%2B%25282%2529-794430.JPG

 

November 23, 2012 by Shiv Aroor - LIVEFIST

 

DRDO Statement: The Interceptor Missile AAD launched by the Scientists of DRDO from Wheeler's Island, Odisha successfully destroyed the incoming Ballistic Missile at an altitude of 15 Kms. The interception took place at 12.52hrs. The target missile, a modified version of Prithvi, mimicking the enemy's ballistic missile, was launched from Launch Complex III, Chandipur. Long Range Radar and MFC Radar located far away could detect the Missile from take-off and tracked it through its entire path. The total trajectory of the incoming Missile was continuously estimated by the guidance computer and subsequently the AAD Missile was launched at an appropriate time to counter and kill the ballistic missile.

 

The Ring Laser Gyro based Navigation System in Target, Fibre Optic Gyro based INS in Interceptor, Onboard computers, Guidance systems, Actuation Systems and the critical RF Seekers used for the terminal phase have performed excellently. The AAD Missile system initially guided by Inertial Navigation system was continuously getting update of the target position by the Radar through a data link.  The Radio Frequency (RF) seeker tracked the Missile & Onboard computer guided the Missile towards the Target Missile and hit the target. The Radio Proximity Fuse (RPF) exploded the warhead thereby destroying the target missile completely.

 

In this mission, a special feature of intercepting multiple target with multiple interceptor was demonstrated successfully. An electronic target with a range of 1500 Kms was launched and the Radars picked up the target missile, tracked the target missile subsequently & launched an electronic interceptor missile. This electronic interceptor missile destroyed the electronic target missile at an altitude of 120 Kms. All the four missiles were tracked by the Radars and all the guidance and launch computers operated in full operational mode for handling multiple targets with multiple interceptor.  All the four missiles were in the sky simultaneously and both the interceptions took place near simultaneously.  This has proved the capability of DRDO to handle multiple targets with multiple interceptors simultaneously. The complete Radar Systems, Communication Networks, Launch Computers, Target update Systems and state of the art Avionics have been completely proven in this Mission.

Partager cet article
Repost0
26 septembre 2012 3 26 /09 /septembre /2012 17:25

système de défense anti-missiles Arrow 3

 

Tel Aviv, Israel (UPI) Sep 25, 2012 Spacewar.com

 

The crucial first test-firing of Israel's Arrow-3 interceptor missile, designed to destroy ballistic weapons, reportedly has been postponed despite efforts to boost the Jewish state's missile defenses amid threats of pre-emptive strikes against Iran.

 

The development of the Arrow-3 program, which is being carried out by state-owned Israel Aerospace Industries and Boeing of the United States, is a year behind schedule.

 

The first full-scale test, firing the two-stage missile against a simulated target, had been planned for this month but the U.S. weekly Space News reported the flight has been postponed until the end of the year.

 

IAI declined to say what the problem is but Israel's Globes business daily reported that it appears to be serious because the test missile has been returned to IAI for unspecified repairs from the launch site at Palmachim Air Base on the Mediterranean coast south of Tel Aviv.

 

Israel's national news agency reported in August that the new Block 4 generation of interceptors, radars and technologies for synchronizing Arrow-3 with U.S. systems is being installed in Israeli batteries, a process that could take some time.

 

Arrow-3, largely funded by the United States since the program was launched in 1988, is designed to intercept long-range ballistic missiles, which for the Israelis these days means Iranian or Syrian weapons.

 

It will be the top level of a four-tier missile defense shield, Israel's most advanced anti-missile system, able to intercept hostile missiles in space outside Earth's atmosphere. It will be able to engage at altitudes double that of the Arrow-2, the current mainstay for covering against ballistic missiles, using detachable warheads that become killer satellites that seek out targets and crash into them.

 

This highly maneuverable system uses a lighter missile than Arrow-2, not only extending Arrow-3's operational altitude but the missile's range as well.

 

The Israeli military's website says the mobile Arrow interceptors include a number of sensors able to identify and intercept incoming missiles with extreme accuracy. These are hooked into long-range, ground-based Super Green Pine radar systems which can identify and track missiles and a new missile control center linking the Arrow batteries, collectively known as the "Defensive Sword" unit.

 

The semi-mobile radar unit is an advanced version of the EL/M-2080 Green Pine system used in Arrow-1 and 2. It's built by Elta, a subsidiary of IAI's Electronics Group. The various components are controlled by the mobile Citron Tree battle management center, built by Israel's Tadiran Electronics.

 

Since all these components are mobile to one degree or another, the system as a whole is more likely to survive pre-emptive strikes than fixed systems.

 

Arrow-3 is due to become operational in 2014 but it's not clear whether the current problems will delay that.

 

Arrow-1 was deployed in 2001 and replaced by Arrow-2. That system remains operational and will be maintain as a backup for Arrow 3, doubling Israel's chances of nailing hostile ballistic missiles.

 

The new variant is considered to be a far more advanced weapon than the U.S. MIM-104 Patriot, a long-range air-defense system built by Raytheon Integrated Defense Systems.

 

Israel's air defense shield has been integrated with U.S. systems during recent joint exercises to combat missile attacks.

 

Overall responsibility for Arrow lies with the U.S. Missile Defense Organization in Washington and the Israeli Defense Ministry in Tel Aviv.

 

IAI's MLM Division is the prime contractor. Apart from Boeing, which manufactures some 35 percent of the missile, key U.S. subcontractors include Lockheed Martin Missiles and Fire Control, which makes the radar seeker, and Raytheon, which produces the infrared seeker.

 

Boeing is expected to produce at least half of the Arrow-3 interceptors in the United States, with Israel handling the integration.

 

It sees prospects for export deals, something both Boeing and IAI are keen to promote as foreign sales of weapons systems have become of paramount importance to defense contractors amid widespread defense cutbacks.

 

India would like to buy an Arrow battery and purchased a Green Pine radar system in 2001. South Korea's also reported to be interested.

 

However, so far the Americans have blocked export initiatives, citing concerns regarding the Missile Technology Control Regime that limits the proliferation of ballistic missile technology.

Partager cet article
Repost0
3 avril 2012 2 03 /04 /avril /2012 12:24

DV15-RWS30.jpg

 

02.04.2012 MER et MARINE

 

On en sait désormais plus sur la version « RWS30 » de l'intercepteur DV15 des Constructions Mécaniques de Normandie, dont nous avions diffusé les premières images l'été dernier. Fort du succès des essais réalisés ces derniers mois, les CMN ont décidé de dévoiler ce bateau très innovant. Par rapport à ses aînés du type DV15, déjà livrés à plusieurs pays (Yémen, Qatar, Emirats Arabes Unis), le RWS30 présente une innovation majeure : l'intégration d'un canon télé-opéré de 30mm. « Plusieurs facteurs nous ont amené à développer cette version RWS30 de l'intercepteur DV15. Tout d'abord, il s'agissait d'une évolution naturelle de notre intercepteur en service dans plusieurs pays et jusqu'à présent armé uniquement d'affûts manuels de 12.7mm. Notre plateforme avait été conçue dès son origine pour un usage militaire et intégrait depuis longtemps des standards de conception et de design militaires. Elle offrait donc d'une base cohérente pour développer un tel produit », explique-t-on aux CMN. Pour mener à bien l'évolution du DV15, le constructeur français a noué différents partenariats. « Tout d'abord, les Suédois de BAE Systems Bofors, au savoir faire reconnu depuis plus de 120 ans en matière de canons, et avec qui nous entretenons des relations constructives sur d'autres projets. Bofors nous proposait une tourelle de calibre 30mm stabilisée parfaitement cohérente en taille et dimensions avec notre plateforme. Ensuite, Thales Communications, avec qui nous travaillons également souvent et dont les solutions avancées de communications et de commandement correspondaient parfaitement à nos objectifs ».
 




Le DV15 RWS30 (© : CMN)

Le challenge de l'intégration

Pour les CMN et leurs partenaires, la mise en oeuvre d'un canon de 30mm sur l'intercepteur fut un challenge, intégrer une telle arme sur une plateforme d'à peine 16 mètres de long relevant en effet de la prouesse technique. L'arme en question est un canon de type ATK M230LF. Cette version modifiée de l'affût équipant les hélicoptères d'attaque américains Apache dispose d'une alimentation par bande, d'une cadence de tir de 200 coups par minute et d'un recul atténué. Il est intégré par Bofors sur sa tourelle gyro-stabilisée Lemur, un système navalisé muni d'un bloc senseurs avec des caméras jour/nuit et une télémétrie laser, d'un module balistique et poursuite. La tourelle est intégrée à bord au système de navigation et/ou à un mini système de combat fourni par Thales afin de désigner les objectifs et recevoir les données de navigation nécessaires à la balistique. « L'intégration à bord de la tourelle Lemur a constitué pour nos équipes, en collaboration avec celles de Bofors, un réel tour de force technologique dans de nombreux domaines. En matière de structure, bien évidemment, car placer un canon de 30mm d'environ 340 kilos sur le toit d'un roof d'un navire d'environ 16 mètres filant à plus de 50 noeuds (avec des chocs au niveau du roof pouvant aller jusqu'à 7 g) ne constitue pas une mince affaire ! »


Le DV15 RWS30 (© : CMN)

« En matière d'aménagement et de propulsion ensuite, de façon à conserver la stabilité et les performances du navire tout en compensant l'adjonction de poids dans les hauts. En matière de compatibilité électromagnétique également, notamment vis-à-vis de la sécurité des munitions à amorce électrique et des interférences mutuelles inter-équipements. Enfin, dans un certain nombre de domaine connexes comme l'ergonomie, l'optimisation du champ de tir, le stockage et le cheminement des munitions, la signature radar... », explique-t-on aux CMN. Pour parvenir à relever le défi, l'industriel normand, basé à Cherbourg, s'est appuyé sur les compétences de ses équipes en matière de design, d'intégration et de recours à des matériaux adaptés : « Vu la taille limitée de la plateforme (et donc la proximité des équipements) et les contraintes fortes d'architecture navale liées aux performances visées, nous avons été amenés à aborder l'ensemble des travaux d'intégration de façon globale. L'expérience et le savoir-faire du chantier en matière d'intégration de systèmes de combat mais également celui de notre filiale JMV Industries, dans le domaine des matériaux composites haute performance, ont été les garants de notre succès ».


Le DV15 RWS30 (© : CMN)


Le DV15 RWS30 (© : CMN)

Campagnes d'essais et de tirs concluantes

Selon les CMN, les performances de base du DV15, comme la vitesse, la maniabilité, l'habitabilité (équipage de 3 à 4 personnes) ou encore l'autonomie (350 nautiques à 40 noeuds) sont préservées sur la version RWS30. Et, avec ce programme, l'intercepteur gagne grandement en capacité, grâce à son canon de 30mm, le bateau pouvant emporter plus de 300 munitions (3 x 110 coups), ainsi que des systèmes de communication et de commandement fournis par Thales. Et c'est avec succès, fin 2011, que le DV15 RWS30 a démontré ses performances lors de campagnes d'essais et de tirs menées au large de Cherbourg. « Nous avons franchi allégrement la barre des 50 noeuds et travaillons encore aujourd'hui à améliorer sensiblement cette performance. Nous avons validé les portées de communications, notamment dans la gamme VHF, lors d'essais en septembre denier en collaboration avec Thales. En octobre, une campagne de tir nous a permis de valider l'ensemble de l'intégration à bord : intégration physique, interfaçage avec le système de navigation et performances de tir. Concernant ces dernières, le comportement de la tourelle est excellent, et les résultats de tir à des vitesses jusqu'à 50 noeuds se rapprochent des performances intrinsèques de la tourelle ! »


Le DV15 RWS30 (© : CMN)

Un large spectre de missions

L'une des raisons qui a conduit les CMN à développer ce nouveau produit est une évolution des besoins des marines. « La demande sur le marché des intercepteurs a évolué ces dernières années vers de nouvelles missions, de nouveaux concepts d'emplois, qui requièrent des systèmes de combat évolués et efficaces ainsi que des capacités d'intégration au sein de dispositif de surveillance et de protection globaux ». Concernant les missions envisageables avec ce nouveau modèle d'intercepteur, le spectre s'est largement étoffé avec la version RWS30. « Elles incluent bien évidemment l'interception, la protection d'infrastructures maritimes critiques, la protection de zone, la lutte contre les trafics, la piraterie, le terrorisme, les missions de police et de souveraineté, d'escorte ... Le champs est large et certainement non exhaustif. Nul doute que les opérationnels sauront imaginer d'autres emplois pour une telle capacité, au vu de leurs missions et organisations propres. Le cas échéant, nous saurons tout naturellement adapter le DV15 à des demandes spécifiques ».


Essais d'un Gunshot Detection System - GDS (© : CMN)

Système modulaire et équipements complémentaires

On notera d'ailleurs que la tourelle Lemur est modulaire et permet d'emporter des armes de calibres différents, comme des mitrailleuses de 12.7mm. La coopération des CMN avec Thales garantit aussi un large choix de solutions dans le domaine des communications. En ce qui concerne la détection, l'intercepteur peut, également, être doté de systèmes électro-optiques. Sur ce point, le constructeur français a collaboré avec Alfaphotonics et validé en mer l'emport d'une boule optronique de type SeaFlir 230 de FLIR Systems. Enfin, CMN a validé l'intégration d'un système de détection de tirs (Gunshot Detection System) d'Acoem (ex-01dB-Metravib) qui pourrait être utile pour des missions en zones côtières, dans des deltas ou des chapelets d'îles par exemple. « Comme vous le voyez, à travers les développements du DV15RWS30, c'est tout une gamme de charges utiles que nous pouvons donc maintenant proposer à nos clients. Enfin, nous pouvons proposer une version classifié BV ou encore une version intégrant une mature démontable permettant un transport par voie routière ou par avion cargo, comme un A400M, pour un déploiement rapide, des missions de protection d'évacuation de ressortissants par la mer par exemple ».


Le DV15 RWS30 (© : CMN)


Le DV15 RWS30 (© : CMN)

Nouveaux essais et premiers clients attendus

Les CMN espèrent bientôt conclure un premier contrat pour cette nouvelle génération d'intercepteurs, sur laquelle le groupe français fonde de grands espoirs. Mais au chantier cherbourgeois, on se veut encore discret : « Nous garderons nécessairement secret le détail de nos prospections. Tout ce qu'on peut dire est qu'elles avancent dans le bon sens. Concernant le futur à court terme, une nouvelle campagne d'essais et de tirs est programmée au printemps. Nous testerons notamment une nouvelle version de la tourelle Lemur incluant un dispositif de visée indépendant (independent line of sight) ».
On notera que les CMN présenteront le DV15 RWS30 à Euronaval, qui se déroulera en octobre prochain au Bourget, près de Paris. Ce salon professionnel, le plus grand dans le monde consacré au naval de défense, sera également l'occasion, pour l'industriel, de dévoiler de nouveaux designs sur sa gamme de bâtiments de moyen tonnage. On parle notamment de nouveautés dans les gammes de patrouilleurs et corvettes des types Vigilante et Combattante...

Partager cet article
Repost0
16 février 2012 4 16 /02 /février /2012 13:30
Indian ABM System Scores Another Success

 

February 16, 2012: STRATEGY PAGE

 

For the seventh time, India successfully tested its anti-missile system, intercepting a Prithvi ballistic missile. The AAD interceptor missile was fired from an island 70 kilometers off the coast. The system uses two types of interceptors. The Prithvi Air Defense (PAD) missile is the larger of the two and is used for high altitude (50-80 kilometers up) interception. The short range Advanced Air Defense (AAD) missile is used for low altitude (up to 30 kilometers) intercepts. The two missiles, in conjunction with a radar system based on the Israeli Green Pine (used with the Arrow anti-missile missile), are to provide defense from ballistic missiles fired as far as 5,000 kilometers away. This will provide some protection from Pakistani and Chinese missiles. A third interceptor, the PDV, is a hypersonic missile that can take down missiles as high as 150 kilometers and is still in development. India is the fifth nation to develop such anti-missile technology.

 

The Indian system has been in development for over a decade. Ten years ago, India ordered two Israeli Green Pine anti-ballistic missile radars. That equipment was used six years ago in a successful Indian test, where one ballistic missile was fired at another, incoming, one. The Israeli Green Pine radar was originally developed for Israel's Arrow anti-ballistic missile system. Arrow was built, in cooperation with the United States, to defend Israel from Iranian and Syrian ballistic missiles. India has since developed, with Israel, the Swordfish radar, which has similar capabilities to the Green Pine and has been operational for two years. Swordfish is part of a system that integrates data from satellites and other sources, in order to detect and track incoming missiles.

 

The interceptor missiles and the fire control systems were designed and built in India, although more Israeli technology may have been purchased to speed things along. India wanted to buy the entire Israeli Arrow system, but the United States refused to allow the sale (which involved a lot of American technology.) The Indian ABM (Anti-Ballistic Missile) system is supposed to become operational in two years.

 

China and Pakistan could only defeat the Indian ABM defenses by firing more missiles, at the same time, than the Indians could handle. It's also possible to equip warheads with decoys, in an attempt to get the interceptor missile to miss. Israel has technology designed to deal with these decoys, and India can probably purchase that. But against an overwhelming number of incoming missiles, some are going to get through.

Partager cet article
Repost0
10 février 2012 5 10 /02 /février /2012 13:30

http://en.rian.ru/images/16530/87/165308791.jpg

 

NEW DELHI, February 10 (RIA Novosti)

 

India has test-fired a domestically developed interceptor missile capable of destroying ballistic missiles, the Hindustan Times reported on Friday.

 

The Advanced Air Defense (AAD) interceptor missile was fired from Wheeler Island off the coast of Odisha in eastern India early on Friday and destroyed the target.

 

The target was a modified surface-to-surface short-range ballistic missile Prithvi, which was fired from the Chandipur range located some 70 km away from Wheeler Island across the sea.

 

“The interceptor directly hit the target and destroyed it,” S.P. Dash, the director of the Integrated Test Range at Chandipur, was quoted as saying.

 

The test was aimed at developing India's multi-layer Ballistic Missile Defense (BMD) system. The last time India successfully tested an AAD interceptor missile was on March 6, 2011.

Partager cet article
Repost0

Présentation

  • : RP Defense
  • : Web review defence industry - Revue du web industrie de défense - company information - news in France, Europe and elsewhere ...
  • Contact

Recherche

Articles Récents

Categories